Delta Lake Performance SEEEREIE -t HE N
Behind the Scenes: LiiigmemRTninIn
From Partitioning to B LB T
Liquid Clustering

softserve

DND »

About me

- Big Data Engineer with extensive experience in Python
- Enthusiastic about math and machine learning
- Big fan of Remembrance of Earth's Past trilogy by Liu Cixin

Roman Dryndik
Senior Big Data Software Engineer

softserve

Agenda

1. Intro

2. Compaction

3. Partitioning

4. VACUUM

5. Statistics and Data Skipping
6. Z-Ordering

7. Bloom Filter Index

8. Liquid Clustering

9. Summary

10.Q&A

softserve

softserve

Introduction

Key Problems:

Small files problem: streaming writes, and DML operations generate thousands of tiny files — high metadata
overhead, slow object-store listings, increased I/0 costs, and poor compression

Over-partitioning: high-cardinality partition keys (e.g., user_id) create thousands of directories with micro-files —
metadata explosion and degraded read performance

Updates and deletes leave behind outdated files — table size grows and performance declines
Inefficient data scanning: without proper data layout, queries scan terabytes instead of gigabytes

softserve

Compaction

Reducing Small Files to Speed Up Queries

softserve

Compaction

Root cause:
Streaming Ingestion: writing micro-batches every few seconds/minutes
DML Operations: frequent MERGE, UPDATE, or DELETE actions produce new files

Over-partitioning: splitting data into too many granular folders

softserve

Compaction

Performance impact:
Growth of metadata in the transaction log
Metadata overhead: the driver spends more time listing files in object storage (S3/ADLS) than processing data
High 1/0 latency: opening/closing thousands of tiny files is inefficient
Poor compression: parquet creates massive overhead (headers/footers) when files are too small

softserve

Compaction

The OPTIMIZE command:
Triggers bin-packing: reads small files and coalesces them into larger files (target size: 1 GB by default)
Idempotent: running it twice on the same data does nothing
ACID: does not block concurrent readers or writers

Auto Optimize (Automated approach):
Optimized writes: shuffles data before writing to reduce file count (increases write latency, improves read)

Auto compact: triggers a "mini-optimize” after a write transaction commits

softserve

Compaction

) ss —vim i ql — vim — vim ion.sql — 80x24
-- Standard bin-packing
OPTIMIZE events_table;

—-- Incremental compaction (Save resources)
OPTIMIZE events_table WHERE date = current_date() - 1;

"compaction.sql" 5L, 147B

softserve

ss — vim compaction.py — vim — vim compaction.py — 80x24

1 spark.databricks.delta.optimizeWrite.enabled = true

2 spark.databricks.delta.autoCompact.enabled = true

Compaction

Delta Lake Small Files Problem

BEFORE: § AFTER:
Small Files Problem Optimized Delta Lake (Compaction)

softserve

Compaction

Streaming: enable Auto Compact + run OPTIMIZE periodically (e.g., daily/weekly) for cleanup
Batch ETL: run OPTIMIZE at the end of the daily job
Strategy: use predicates (WHERE) to avoid compacting the entire table every time

softserve

Partitioning

Splitting Data by Keys for Faster Queries

softserve

Partitioning

The concept:
Splitting data into sub-directories based on high-level keys (e.g., Date, Region, Department)
Structure: s3://bucket/table/date=2024-01-01/region=US/...

The benefit — partition pruning (aka data skipping):
When a query includes a partition key in the WHERE clause, the engine completely ignores irrelevant directories

Reduces scanned data from terabytes to gigabytes

The use case:
Best for heavy filtering on specific columns (e.g., "Give me data for Yesterday").

softserve

Partitioning

softserve

= partitioning.sql

CREATE TABLE sales (
id INT,
amount DOUBLE,
sale_date DATE
) USING DELTA
PARTITIONED BY (sale_date);

SELECT sum(amount)
FROM sales

WHERE sale_date = '2024-01-01"';

Partitioning

The trap — over-partitioning:
Partitioning by high-cardinality columns (e.g., user_id, timestamp, order_id)
Result: thousands of tiny directories containing tiny files
Impact: severe metadata overhead (driver node bottleneck) and loss of compression efficiency

Typical symptoms:
Many partitions containing 1-10 files

File sizes <32 MB
Query plan showing hundreds of partitions scanned

OPTIMIZE is taking hours because the data is too fragmented

softserve

Partitioning

General recommendations:
Partition only by low- or medium-cardinality columns (e.g., date, country, category)
Prefer Z-ordering or Bloom filters instead of “deep partitioning”
If you have already over partitioned:
Repartition the table and rewrite it
Consolidate partitions (e.g., daily — monthly)

Rule of thumb:
Partitions should generally contain at least 1 GB of data
If your table is small (< 1 TB), you might not need partitioning at all

softserve

softserve

VACUUM

Keeping Tables Clean and Performant

VACUUM

UPDATE, DELETE, INSERT, and MERGE operations create new files
Old files increase the table size

When your tables are large, you have poor read performance

softserve

VACUUM

VACUUM operation — removes old unused parquet files

@ = vacuum.sql

VACUUM table_name [RETAIN num HOURS];

softserve

VACUUM

Retention period:
Default: 7 days (RETAIN 168 HOURS)
Can be reduced (e.g., for dev environments): RETAIN 24 HOURS
Warning: too short — cannot time travel/rollback

@ = vacuum.sql

oot

VACUUM table_name [RETAIN num HOURS];

softserve

VACUUM

Effects of VACUUM:
Reduces table size on disk
Speeds up table scans
Reduces cluster workload during reads

Tips:

Run VACUUM after large updates/deletes

Avoid running too frequently to preserve history

softserve

Statistics & Data Skipping

Query Faster Without Full Scans

Statistics & Data Skipping

Delta Lake stores metadata for every data file:
Min/max values per column
Number of records
Null counts

Partition information (if applicable)

Why this matters:
The client can understand the data distribution without opening the file
Enables smarter, more targeted reading

softserve

Statistics & Data Skipping

rdryn — i ~[proj / lak initive-guide — ssh in@192.168.0.10 — 123x32

3 iy

: 883342,
: 1619121488000,
. true,

3 iy,
: 325440,
1 1619121487600,
. true,

softserve

Statistics & Data Skipping

@ rdryn — admin@bozon: ~[projects — ssh admin@192.168.0.10 — 123x32
Zellij (fascinating-brachiosaur) JRELRE:# VERTICAL
admin@bozon: ~/projects/delta-lake-definitive-guide admin@bozon: ~/projects/delta-lake-definitive-guide — 0
: true, {
I 47559,

: {}, : 78030,
: 325440, : 1208672,
: 1619121487000, : 30068
: true,

softserve <g> LOCK P <p> PANE ¥ <t> TAB P <n> RESIZE P <h> MOVE ¥ <s> SEARCH P <o> SESSION ¥ <g> QUIT |

Statistics & Data Skipping

How it works:
Client reads delta metadata (stats)
Compares stats with query filters
Only loads files whose min/max overlaps with the filter

Result:
Fewer files scanned
Less I/0
Faster queries

softserve

Statistics & Data Skipping

What the client does:
Checks file stats (min/max event_date)
Skips all files where max < '2023-06-01"

Reads only relevant files instead of scanning the whole table

® = filter.sql

Impact:
SEFC] %

FROM events

WHERE event_date = '2023-06-01';

Significant reduction in scanned data
Lower latency

Better cluster utilization

softserve

softserve

Z-Ordering

Improving Multi-Column Filters

Z-Ordering

Z-Ordering is a data clustering algorithm:
Reorders data within Delta files

Groups related column values close together on disk
Uses a space-filling “Z-curve” to interleave bits from multiple columns

Goal:
Make multi-column filtering faster by improving data locality

softserve

Z-Ordering

Benefits:
Reduces the number of files a client needs to scan
More efficient data skipping
Works best for high-cardinality columns (e.g., user_id, timestamp)

Particularly effective for multi-column predicates:

® 0 ¢ = z-curve.sq|

WHERE user_id = X AND event_date BETWEEN

softserve

Z-Ordering

Without Z-order:
Data for user_id and event_date is spread across many files, which means poor locality

Client scans many files just to find a small subset of rows
With Z-order:

Related values of user_id + event_date are co-located in fewer files
The client can skip most files

Result:
Significant improvements in selective queries

softserve

Z-Ordering

Scenario:

You have a user events table

Columns:
user_id — high-cardinality identifier
event_date — timestamp/date
event_type — string (e.g., "click", "view", etc.)
session_id
country

device_type

softserve

C X) = example.sql

SELECT *

FROM events

WHERE
user_id = '65e1419e-59db-4c5e-9914-b69361bac2fth'
event_date BETWEEN '2025-05-01' AND '2025-06-01"';

Query pattern:

Most queries filter by a combination of user_id and
event_date

."‘:“‘a |‘ D

Z-Ordering

Without Z-order:
Rows for the same user_id are spread across many files

Date ranges overlap across files unpredictably
The client must scan hundreds of files

With Z-order on (user_id, event_date):
Rows for each user_id become physically close together

Their dates fall into tight ranges
The client can skip most files

softserve

> O = z-curve-table-optimization-2.sq|

OPTIMIZE events ZORDER BY (user_id, event_date);

Notes:

Often combined with OPTIMIZE to compact small
files and then apply Z-order

Works best when you Z-order the columns most
used together in filters

Not necessary for partitioned columns

Bloom Filter Index

Fast Lookups on High-Cardinality Columns

softserve

Bloom Filter Index

Use case:
Columns with high cardinality (UUIDs, emails, session IDs, order IDs)

Traditional data skipping (min/max stats) doesn't help for these columns
Bloom filters give a fast, space-efficient way to check “might contain this value?”

Result:

Avoids scanning files that do not contain the value

softserve

Bloom Filter Index

Benefits:
Very compact bit array + multiple hash functions
Can answer:
“Definitely not present”
“Possibly present” (false positives possible, false negatives not possible)

Why this helps:
It is possible to check the Bloom filter before reading the file
This eliminates large portion of irrelevant files — less I/0, faster reads

softserve

Bloom Filter Index

Bloom Filters: A Quick Guide to Probabilistic Data Structures

A memory-efficient bit array.

m

Starts as an array of 'm’ bits, all set to 0.

Allows False Positives, Zero False Negatives

False Negatives

False Positives (None)

(Possible)

It can say an item exists when it doesn't, but it
will never miss an existing item.

softserve

How a Bloom Filter Works

To Add an Element
Data Hash Hash Hash
packet Function 1 Function 2 Function 3

The element is passed through 'k' hash functions,
and the corresponding bits are flipped to 1.

Key Characteristics & Uses
Performance is a Tunable Trade-off

Memory Size (m) ‘):
balanced
Number of items (n)
False Positive Rate
Hash Functions (k)
balanced

The false positive rate depends on memory size (m),
number of items (n), and hash functions (k).

To Check for an Element

If all corresponding bits are 1, it's probably in the set;
if any bit is 0, it's definitely not.

Ideal for Filtering Expensive Lookups

gc
S

=)
S O

Google BigTable

Squid Proxy Servers

D

Used by Google BigTable and Squid proxy servers
to avoid costly checks for non-existent data.
A NotebookLM

Bloom Filter Index

Consider a table:
user_events
Columns:
event_id (UUID)
user_email (string)
event_timestamp
event_type

softserve

Bloom Filter Index

Without Bloom filters:

UUIDs have no meaningful ordering
min/max stats are useless

Client may scan hundreds of files

= bloom-filter.sql

0M user_events

SELECT =*
0
\E

=|p
rn

AL
Wi

softserve

RE event_id = '550e8400-e29b-41d4-a716-446655440000";

Bloom Filter Index

With Bloom filter on event_id:

O = bloom-filrer-on-event-id.sql

ALTER TABLE user_events
ADD

BLOOMFILTER INDEX
ON event_id
OPTIONS (fpp = 0.01, numItems = 1000000);

softserve

Bloom Filter Index

Effect:
Client quickly checks each file's Bloom filter
Most files are rejected immediately
Only a few files are scanned

Moreover:
Great for equality lookups on large, unique columns
False positives are fine because it's still much faster than scanning
Complements Z-order and statistics-based skipping

Small index size means low overhead

softserve

softserve

Liquid Clustering

Adaptive Layout for Fast Queries

Liquid Clustering

Table management requires careful partition design

Changing partition keys is expensive and often requires a full table rewrite

Z-ordering needs continuous monitoring to match evolving query patterns

Data skew: uneven distribution creates imbalanced partition sizes, which slows down queries

softserve

Liquid Clustering

A new dynamic clustering strategy:
Continuously maintains clustering as data evolves
No need for expensive, full-table OPTIMIZE operations
Automatically adapts as new data arrives or existing data changes
It replaces partitioning and Z-ordering
No more expensive rewrites

|dea:

Instead of periodically “reorganizing everything,” the table stays well-organized over time

The data is organized using clustering keys to optimize layout and simplify table management

softserve

Liquid Clustering

Frequent filtering on high-cardinality columns where partitioning fails
Tables with data skew that need balanced distribution

Fast-growing tables requiring constant tuning

High-concurrency writes, where clustering reduces conflicts
Changing query access patterns over time

Cases where partitioning would create too many or too few partitions

softserve

Liquid Clustering

Add CLUSTER BY (<columns>) in CREATE TABLE for existing tables
ALTER TABLE <name> CLUSTER BY (<columns>) for new tables
Updates metadata only — does not rewrite existing data

SQL, Python, and Scala APIs are all supported

DataFrame API note: clustering keys can be set only at creation or with overwrite mode — not in append mode

softserve

Liquid Clustering

Clustering is incompatible with traditional partitioning and ZORDER.
It is designed to replace both.

softserve

Liquid Clustering

Selecting the right keys is crucial — good keys maximize data skipping and boost query performance.

Filter-first: choose columns most used in WHERE clauses and joins

Stats required: keys must be among columns with collected statistics (first 32 by default)
Avoid redundancy: skip highly correlated columns — pick just one

Up to 4 keys: more can hurt performance on tables <10 TB

softserve

Liquid Clustering

How it works:

Workload analysis: identifies the most frequently filtered columns

Adaptive optimization: updates keys as query patterns or data distribution change
Cost-aware decisions: picks new keys only when the benefit outweighs the re-clustering cost
Powered by predictive optimization: runs asynchronously in the background

C N) = clustering.sql

CREATE OR REPLACE TABLE tablel(column®1 int, column02 string)
CLUSTER BY AUTO;

softserve

Liquid Clustering

When keys may not be selected:
The table is too small to benefit

The existing layout is already effective
Insufficient or inconsistent workload

softserve

Liquid Clustering

Stable performance without heavy maintenance jobs

Faster queries with consistent data skipping

Lower cost: avoids massive table rewrites

Supports evolving datasets and dynamic clustering keys

Redefine clustering keys without rewriting existing data is possible

Simplify data layout: replaces manual partitioning and Z-order with one flexible technique

Adapt to change: modify clustering keys without costly rewrites
Automate with intelligence: automatic Liquid Clustering analyzes workloads and manages keys

softserve

softserve

Unlock Faster Queries with Databricks Liquid Clustering

The Modern Way to Organize Data

A Smarter Alternative
to Partitioning & Z-Order
Liquid clustering automatically

optimizes your data layout
to speed up queries.

Evolve Your Data
Layout On-the-Fly
You can redefine clustering

keys at any time without
rewriting existing data.

Ideal for Dynamic &
Complex Tables

Best for tables with
high-cardinality filters,
skewed data, or changing
access patterns.

S

Getting Started with Liquid Clustering

Enable with a Simple
“CLUSTER BY" Clause
Add “CLUSTER BY (column_name)"

during table creation or when
altering an existing table.

Let Databricks Do the Work
with “CLUSTER BY AUTO"
This feature intelligently selects

and adapts clustering keys based
on your actual query workioad.

Run "OPTIMIZE' to Apply
Clustering

Periodically run the “OPTIMIZE" command to
incrementally cluster new or updated data.

A NotebookLM

Summary

softserve

Summary & Recommendations

No single optimization solves everything — Delta works best when techniques are combined
Start simple: partition — compact — Z-order

Add Bloom for faster lookups on high-cardinality columns

Run VACUUM regularly

Migrate to Liquid Clustering (if possible) for large, frequently-updated tables

Re-evaluate periodically as data volume grows

softserve

Any

Questlons’

............
IIIIIIIIIIIIIIIIII
e T E T TR T T
lllllllllllllllll
llllllllll
......
T T EE LR,
- n L]

softserve

Next-Gen Data Layout: Upgrading from Partitioning & Z-Ordering to Liquid Clustering

The Old Way: Manual & Rigid Optimization

Partitioning: Coarse-Grained Pruning

Splits data into physical sub-directories based
on low-cardinality keys (e.g., date, region). The ,“9"3_" ;-
Partitioning” Trap
Using high-cardinality keys Feature
(e.g. user,ic? creates
thousands of tiny files,
crippling performance.
Best For
Flexibility
<A : -peﬂonnance
crippled
Maintenance

Z-Ordering: Static Data Co-location

Reorders data within files to group related column
values together, improving multi-column filtering.

OPTIMIZE 50%

High Maintenance & Performance Decay

Requires periodic, expensive OPTIMIZE jobs and
its effectiveness degrades as new data arrives.

The New Way: Dynamic & Automated Optimization

Liquid Clustering: A Flexible, Adaptive Data Layout
Replaces both partitioning and Z-Ordering with a single,

Feature Comparlson dynamic data organization strategy.
iz o i Liquid
Partitioning Z-Ordering Clustering
Low- High- Evolving
cardinali cardinality, access
columnsziate, multi-column | patterns & ‘
country) filters data skew . 2
Rigid Rigid (Static = Fiexible
(Full table snapshot, (Change keys
rewrite to needs without

change keys) = re-running) rewrits)

Manual tuning y:r'i":;k Incremental &

to avoid over- automated
partitioning gg;:)h:lilRZjEJbs OPTIMIZE jobs

Automated & Intelligent Tuning
Can automatically select the best clustering
keys by analyzing historical query workload:

%

Time

Change Keys Without Rewriting Data

Unlike partitioning, you can modify clustering keys as
query patterns evolve without costly table rewrites.

No Rewrites

A NotebookLM

softserve

