
DND

Delta Lake Performance 
Behind the Scenes:
From Partitioning to 
Liquid Clustering



DND

Roman Dryndik
Senior Big Data Software Engineer

About me
• Big Data Engineer with extensive experience in Python

• Enthusiastic about math and machine learning
• Big fan of Remembrance of Earth's Past trilogy by Liu Cixin



DND

Agenda
1. Intro
2. Compaction
3. Partitioning
4. VACUUM
5. Statistics and Data Skipping
6. Z-Ordering
7. Bloom Filter Index
8. Liquid Clustering
9. Summary
10.Q&A



DND

Intro



DND

Introduction
Why Delta Lake Optimization Matters

Key Problems:
• Small files problem: streaming writes, and DML operations generate thousands of tiny files → high metadata 

overhead, slow object-store listings, increased I/O costs, and poor compression

• Over-partitioning: high-cardinality partition keys (e.g., user_id) create thousands of directories with micro-files →
metadata explosion and degraded read performance

• Updates and deletes leave behind outdated files → table size grows and performance declines
• Inefficient data scanning: without proper data layout, queries scan terabytes instead of gigabytes



DND

Compaction
Reducing Small Files to Speed Up Queries



DND

Compaction
The Small Files Problem

Root cause:
• Streaming Ingestion: writing micro-batches every few seconds/minutes
• DML Operations: frequent MERGE, UPDATE, or DELETE actions produce new files

• Over-partitioning: splitting data into too many granular folders



DND

Compaction
The Small Files Problem

Performance impact:
• Growth of metadata in the transaction log
• Metadata overhead: the driver spends more time listing files in object storage (S3/ADLS) than processing data

• High I/O latency: opening/closing thousands of tiny files is inefficient
• Poor compression: parquet creates massive overhead (headers/footers) when files are too small



DND

Compaction
OPTIMIZE & Auto Optimize

The OPTIMIZE command:
• Triggers bin-packing: reads small files and coalesces them into larger files (target size: 1 GB by default)

• Idempotent: running it twice on the same data does nothing
• ACID: does not block concurrent readers or writers

Auto Optimize (Automated approach):
• Optimized writes: shuffles data before writing to reduce file count (increases write latency, improves read)

• Auto compact: triggers a "mini-optimize” after a write transaction commits



DND

Compaction



DND

Compaction



DND

Compaction
Best Practices

• Streaming: enable Auto Compact + run OPTIMIZE periodically (e.g., daily/weekly) for cleanup
• Batch ETL: run OPTIMIZE at the end of the daily job

• Strategy: use predicates (WHERE) to avoid compacting the entire table every time



DND

Partitioning
Splitting Data by Keys for Faster Queries



DND

Partitioning
Physical Data Layout

The concept:
• Splitting data into sub-directories based on high-level keys (e.g., Date, Region, Department)

• Structure: s3://bucket/table/date=2024-01-01/region=US/...

The benefit — partition pruning (aka data skipping):
• When a query includes a partition key in the WHERE clause, the engine completely ignores irrelevant directories

• Reduces scanned data from terabytes to gigabytes

The use case:
• Best for heavy filtering on specific columns (e.g., "Give me data for Yesterday").



DND

Partitioning



DND

Partitioning
Over Partitioning

The trap — over-partitioning:
• Partitioning by high-cardinality columns (e.g., user_id, timestamp, order_id)

• Result: thousands of tiny directories containing tiny files
• Impact: severe metadata overhead (driver node bottleneck) and loss of compression efficiency

Typical symptoms:
• Many partitions containing 1–10 files

• File sizes < 32 MB
• Query plan showing hundreds of partitions scanned

• OPTIMIZE is taking hours because the data is too fragmented



DND

Partitioning
How to Avoid Over-Partitioning

General recommendations:
• Partition only by low- or medium-cardinality columns (e.g., date, country, category)

• Prefer Z-ordering or Bloom filters instead of “deep partitioning”
• If you have already over partitioned:

§ Repartition the table and rewrite it
§ Consolidate partitions (e.g., daily →monthly)

Rule of thumb:
• Partitions should generally contain at least 1 GB of data

• If your table is small (< 1 TB), you might not need partitioning at all



DND

VACUUM
Keeping Tables Clean and Performant



DND

VACUUM
Problem

• UPDATE, DELETE, INSERT, and MERGE operations create new files
• Old files increase the table size

• When your tables are large, you have poor read performance



DND

VACUUM
Solution

• VACUUM operation — removes old unused parquet files



DND

VACUUM
Solution

Retention period:
• Default: 7 days (RETAIN 168 HOURS)

• Can be reduced (e.g., for dev environments): RETAIN 24 HOURS
• Warning: too short → cannot time travel/rollback



DND

VACUUM
Impact on Table Size & Performance

Effects of VACUUM:

• Reduces table size on disk

• Speeds up table scans
• Reduces cluster workload during reads

Tips:
• Run VACUUM after large updates/deletes

• Avoid running too frequently to preserve history



DND

Statistics & Data Skipping
Query Faster Without Full Scans



DND

Statistics & Data Skipping
File-Level Statistics

Delta Lake stores metadata for every data file:
• Min/max values per column

• Number of records
• Null counts

• Partition information (if applicable)

Why this matters:
• The client can understand the data distribution without opening the file
• Enables smarter, more targeted reading



DND

Statistics & Data Skipping



DND

Statistics & Data Skipping



DND

Statistics & Data Skipping
Data Skipping Means Client Avoids Reading Files That Cannot Satisfy the Query

How it works:
• Client reads delta metadata (stats)

• Compares stats with query filters
• Only loads files whose min/max overlaps with the filter

Result:
• Fewer files scanned

• Less I/O
• Faster queries



DND

Statistics & Data Skipping
Data Skipping Means Client Avoids Reading Files That Cannot Satisfy the Query

What the client does:
• Checks file stats (min/max event_date)
• Skips all files where max < '2023-06-01'

• Reads only relevant files instead of scanning the whole table

Impact:
• Significant reduction in scanned data
• Lower latency

• Better cluster utilization



DND

Z-Ordering
Improving Multi-Column Filters



DND

Z-Ordering
What Is Z-Ordering?

Z-Ordering is a data clustering algorithm:
• Reorders data within Delta files

• Groups related column values close together on disk
• Uses a space-filling “Z-curve” to interleave bits from multiple columns

Goal:
• Make multi-column filtering faster by improving data locality



DND

Z-Ordering
Why Z-Ordering?

Benefits:
• Reduces the number of files a client needs to scan

• More efficient data skipping
• Works best for high-cardinality columns (e.g., user_id, timestamp)

• Particularly effective for multi-column predicates:



DND

Z-Ordering
How Z-Order Helps

Without Z-order:
• Data for user_id and event_date is spread across many files, which means poor locality

• Client scans many files just to find a small subset of rows

With Z-order:
• Related values of user_id + event_date are co-located in fewer files
• The client can skip most files

Result:
• Significant improvements in selective queries



DND

Z-Ordering
How Z-Order Helps

Scenario:
• You have a user events table

Columns:
• user_id — high-cardinality identifier

• event_date — timestamp/date
• event_type — string (e.g., "click", "view", etc.)

• session_id
• country

• device_type

Query pattern:
• Most queries filter by a combination of user_id and 

event_date



DND

Z-Ordering
How Z-Order Helps

Without Z-order:
• Rows for the same user_id are spread across many files

• Date ranges overlap across files unpredictably
• The client must scan hundreds of files

With Z-order on (user_id, event_date):
• Rows for each user_id become physically close together

• Their dates fall into tight ranges
• The client can skip most files

Notes:
• Often combined with OPTIMIZE to compact small 

files and then apply Z-order
• Works best when you Z-order the columns most 

used together in filters
• Not necessary for partitioned columns



DND

Bloom Filter Index
Fast Lookups on High-Cardinality Columns



DND

Bloom Filter Index
Why Bloom Filters?

Use case:
• Columns with high cardinality (UUIDs, emails, session IDs, order IDs)

• Traditional data skipping (min/max stats) doesn’t help for these columns
• Bloom filters give a fast, space-efficient way to check “might contain this value?”

Result:
• Avoids scanning files that do not contain the value



DND

Bloom Filter Index
Bloom Filter = Probabilistic Index

Benefits:
• Very compact bit array + multiple hash functions

• Can answer:
§ “Definitely not present”

§ “Possibly present” (false positives possible, false negatives not possible)

Why this helps:
• It is possible to check the Bloom filter before reading the file
• This eliminates large portion of irrelevant files → less I/O, faster reads



DND

Bloom Filter Index



DND

Bloom Filter Index
Example — UUID or Email Lookups

Consider a table: 
§ user_events

Columns:
§ event_id (UUID)
§ user_email (string)

§ event_timestamp
§ event_type



DND

Bloom Filter Index
Example — UUID or Email Lookups

Without Bloom filters:
• UUIDs have no meaningful ordering
• min/max stats are useless

• Client may scan hundreds of files



DND

Bloom Filter Index
Example — UUID or Email Lookups

With Bloom filter on event_id:



DND

Bloom Filter Index
Example — UUID or Email Lookups

Effect:
• Client quickly checks each file’s Bloom filter

• Most files are rejected immediately
• Only a few files are scanned

Moreover:
• Great for equality lookups on large, unique columns

• False positives are fine because it’s still much faster than scanning
• Complements Z-order and statistics-based skipping

• Small index size means low overhead



DND

Liquid Clustering
Adaptive Layout for Fast Queries



DND

Liquid Clustering
Traditional Optimization Challenges

• Table management requires careful partition design

• Changing partition keys is expensive and often requires a full table rewrite
• Z-ordering needs continuous monitoring to match evolving query patterns

• Data skew: uneven distribution creates imbalanced partition sizes, which slows down queries



DND

Liquid Clustering
What Is Liquid Clustering?

A new dynamic clustering strategy:
• Continuously maintains clustering as data evolves

• No need for expensive, full-table OPTIMIZE operations
• Automatically adapts as new data arrives or existing data changes

• It replaces partitioning and Z-ordering
• No more expensive rewrites

Idea:
• Instead of periodically “reorganizing everything,” the table stays well-organized over time

• The data is organized using clustering keys to optimize layout and simplify table management



DND

Liquid Clustering
When to Use Liquid Clustering

• Frequent filtering on high-cardinality columns where partitioning fails

• Tables with data skew that need balanced distribution
• Fast-growing tables requiring constant tuning

• High-concurrency writes, where clustering reduces conflicts
• Changing query access patterns over time

• Cases where partitioning would create too many or too few partitions



DND

Liquid Clustering
Enabling Liquid Clustering

• Add CLUSTER BY (<columns>) in CREATE TABLE for existing tables

• ALTER TABLE <name> CLUSTER BY (<columns>) for new tables
• Updates metadata only — does not rewrite existing data

• SQL, Python, and Scala APIs are all supported
• DataFrame API note: clustering keys can be set only at creation or with overwrite mode — not in append mode



DND

Liquid Clustering
Enabling Liquid Clustering

Clustering is incompatible with traditional partitioning and ZORDER.
It is designed to replace both.



DND

Liquid Clustering
Choosing Clustering Keys

Selecting the right keys is crucial — good keys maximize data skipping and boost query performance.

• Filter-first: choose columns most used in WHERE clauses and joins

• Stats required: keys must be among columns with collected statistics (first 32 by default)
• Avoid redundancy: skip highly correlated columns — pick just one
• Up to 4 keys: more can hurt performance on tables < 10 TB



DND

Liquid Clustering
Automatic Liquid Clustering

How it works:
• Workload analysis: identifies the most frequently filtered columns

• Adaptive optimization: updates keys as query patterns or data distribution change
• Cost-aware decisions: picks new keys only when the benefit outweighs the re-clustering cost

• Powered by predictive optimization: runs asynchronously in the background



DND

Liquid Clustering
Automatic Liquid Clustering

When keys may not be selected:
• The table is too small to benefit

• The existing layout is already effective
• Insufficient or inconsistent workload



DND

Liquid Clustering
Key Benefits

• Stable performance without heavy maintenance jobs
• Faster queries with consistent data skipping

• Lower cost: avoids massive table rewrites
• Supports evolving datasets and dynamic clustering keys

• Redefine clustering keys without rewriting existing data is possible
• Simplify data layout: replaces manual partitioning and Z-order with one flexible technique

• Adapt to change: modify clustering keys without costly rewrites
• Automate with intelligence: automatic Liquid Clustering analyzes workloads and manages keys



DND



DND

Summary



DND

Summary & Recommendations
Combine Techniques for Best Performance

• No single optimization solves everything — Delta works best when techniques are combined
• Start simple: partition → compact → Z-order

• Add Bloom for faster lookups on high-cardinality columns
• Run VACUUM regularly

• Migrate to Liquid Clustering (if possible) for large, frequently-updated tables
• Re-evaluate periodically as data volume grows



DND

Any 
Questions?



DND



DND

FOR 
THE 
FUTURE


