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About me
• Big Data Engineer with extensive experience in Python

• Enthusiastic about math and machine learning
• Big fan of Remembrance of Earth's Past trilogy by Liu Cixin
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Introduction
Why Delta Lake Optimization Matters

Key Problems:
• Small files problem: streaming writes, and DML operations generate thousands of tiny files → high metadata 

overhead, slow object-store listings, increased I/O costs, and poor compression

• Over-partitioning: high-cardinality partition keys (e.g., user_id) create thousands of directories with micro-files →
metadata explosion and degraded read performance

• Updates and deletes leave behind outdated files → table size grows and performance declines
• Inefficient data scanning: without proper data layout, queries scan terabytes instead of gigabytes
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Reducing Small Files to Speed Up Queries
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Compaction
The Small Files Problem

Root cause:
• Streaming Ingestion: writing micro-batches every few seconds/minutes
• DML Operations: frequent MERGE, UPDATE, or DELETE actions produce new files

• Over-partitioning: splitting data into too many granular folders
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Compaction
The Small Files Problem

Performance impact:
• Growth of metadata in the transaction log
• Metadata overhead: the driver spends more time listing files in object storage (S3/ADLS) than processing data

• High I/O latency: opening/closing thousands of tiny files is inefficient
• Poor compression: parquet creates massive overhead (headers/footers) when files are too small
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Compaction
OPTIMIZE & Auto Optimize

The OPTIMIZE command:
• Triggers bin-packing: reads small files and coalesces them into larger files (target size: 1 GB by default)

• Idempotent: running it twice on the same data does nothing
• ACID: does not block concurrent readers or writers

Auto Optimize (Automated approach):
• Optimized writes: shuffles data before writing to reduce file count (increases write latency, improves read)

• Auto compact: triggers a "mini-optimize” after a write transaction commits
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Compaction
Best Practices

• Streaming: enable Auto Compact + run OPTIMIZE periodically (e.g., daily/weekly) for cleanup
• Batch ETL: run OPTIMIZE at the end of the daily job

• Strategy: use predicates (WHERE) to avoid compacting the entire table every time
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Splitting Data by Keys for Faster Queries
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Partitioning
Physical Data Layout

The concept:
• Splitting data into sub-directories based on high-level keys (e.g., Date, Region, Department)

• Structure: s3://bucket/table/date=2024-01-01/region=US/...

The benefit — partition pruning (aka data skipping):
• When a query includes a partition key in the WHERE clause, the engine completely ignores irrelevant directories

• Reduces scanned data from terabytes to gigabytes

The use case:
• Best for heavy filtering on specific columns (e.g., "Give me data for Yesterday").
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Partitioning
Over Partitioning

The trap — over-partitioning:
• Partitioning by high-cardinality columns (e.g., user_id, timestamp, order_id)

• Result: thousands of tiny directories containing tiny files
• Impact: severe metadata overhead (driver node bottleneck) and loss of compression efficiency

Typical symptoms:
• Many partitions containing 1–10 files

• File sizes < 32 MB
• Query plan showing hundreds of partitions scanned

• OPTIMIZE is taking hours because the data is too fragmented
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Partitioning
How to Avoid Over-Partitioning

General recommendations:
• Partition only by low- or medium-cardinality columns (e.g., date, country, category)

• Prefer Z-ordering or Bloom filters instead of “deep partitioning”
• If you have already over partitioned:

§ Repartition the table and rewrite it
§ Consolidate partitions (e.g., daily →monthly)

Rule of thumb:
• Partitions should generally contain at least 1 GB of data

• If your table is small (< 1 TB), you might not need partitioning at all
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VACUUM
Keeping Tables Clean and Performant
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VACUUM
Problem

• UPDATE, DELETE, INSERT, and MERGE operations create new files
• Old files increase the table size

• When your tables are large, you have poor read performance
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VACUUM
Solution

• VACUUM operation — removes old unused parquet files
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VACUUM
Solution

Retention period:
• Default: 7 days (RETAIN 168 HOURS)

• Can be reduced (e.g., for dev environments): RETAIN 24 HOURS
• Warning: too short → cannot time travel/rollback
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VACUUM
Impact on Table Size & Performance

Effects of VACUUM:

• Reduces table size on disk

• Speeds up table scans
• Reduces cluster workload during reads

Tips:
• Run VACUUM after large updates/deletes

• Avoid running too frequently to preserve history
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Statistics & Data Skipping
Query Faster Without Full Scans
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Statistics & Data Skipping
File-Level Statistics

Delta Lake stores metadata for every data file:
• Min/max values per column

• Number of records
• Null counts

• Partition information (if applicable)

Why this matters:
• The client can understand the data distribution without opening the file
• Enables smarter, more targeted reading



DND

Statistics & Data Skipping



DND

Statistics & Data Skipping



DND

Statistics & Data Skipping
Data Skipping Means Client Avoids Reading Files That Cannot Satisfy the Query

How it works:
• Client reads delta metadata (stats)

• Compares stats with query filters
• Only loads files whose min/max overlaps with the filter

Result:
• Fewer files scanned

• Less I/O
• Faster queries
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Statistics & Data Skipping
Data Skipping Means Client Avoids Reading Files That Cannot Satisfy the Query

What the client does:
• Checks file stats (min/max event_date)
• Skips all files where max < '2023-06-01'

• Reads only relevant files instead of scanning the whole table

Impact:
• Significant reduction in scanned data
• Lower latency

• Better cluster utilization
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Z-Ordering
Improving Multi-Column Filters
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Z-Ordering
What Is Z-Ordering?

Z-Ordering is a data clustering algorithm:
• Reorders data within Delta files

• Groups related column values close together on disk
• Uses a space-filling “Z-curve” to interleave bits from multiple columns

Goal:
• Make multi-column filtering faster by improving data locality
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Z-Ordering
Why Z-Ordering?

Benefits:
• Reduces the number of files a client needs to scan

• More efficient data skipping
• Works best for high-cardinality columns (e.g., user_id, timestamp)

• Particularly effective for multi-column predicates:
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Z-Ordering
How Z-Order Helps

Without Z-order:
• Data for user_id and event_date is spread across many files, which means poor locality

• Client scans many files just to find a small subset of rows

With Z-order:
• Related values of user_id + event_date are co-located in fewer files
• The client can skip most files

Result:
• Significant improvements in selective queries
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Z-Ordering
How Z-Order Helps

Scenario:
• You have a user events table

Columns:
• user_id — high-cardinality identifier

• event_date — timestamp/date
• event_type — string (e.g., "click", "view", etc.)

• session_id
• country

• device_type

Query pattern:
• Most queries filter by a combination of user_id and 

event_date
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Z-Ordering
How Z-Order Helps

Without Z-order:
• Rows for the same user_id are spread across many files

• Date ranges overlap across files unpredictably
• The client must scan hundreds of files

With Z-order on (user_id, event_date):
• Rows for each user_id become physically close together

• Their dates fall into tight ranges
• The client can skip most files

Notes:
• Often combined with OPTIMIZE to compact small 

files and then apply Z-order
• Works best when you Z-order the columns most 

used together in filters
• Not necessary for partitioned columns
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Bloom Filter Index
Fast Lookups on High-Cardinality Columns
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Bloom Filter Index
Why Bloom Filters?

Use case:
• Columns with high cardinality (UUIDs, emails, session IDs, order IDs)

• Traditional data skipping (min/max stats) doesn’t help for these columns
• Bloom filters give a fast, space-efficient way to check “might contain this value?”

Result:
• Avoids scanning files that do not contain the value
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Bloom Filter Index
Bloom Filter = Probabilistic Index

Benefits:
• Very compact bit array + multiple hash functions

• Can answer:
§ “Definitely not present”

§ “Possibly present” (false positives possible, false negatives not possible)

Why this helps:
• It is possible to check the Bloom filter before reading the file
• This eliminates large portion of irrelevant files → less I/O, faster reads
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Bloom Filter Index
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Bloom Filter Index
Example — UUID or Email Lookups

Consider a table: 
§ user_events

Columns:
§ event_id (UUID)
§ user_email (string)

§ event_timestamp
§ event_type
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Bloom Filter Index
Example — UUID or Email Lookups

Without Bloom filters:
• UUIDs have no meaningful ordering
• min/max stats are useless

• Client may scan hundreds of files
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Bloom Filter Index
Example — UUID or Email Lookups

With Bloom filter on event_id:
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Bloom Filter Index
Example — UUID or Email Lookups

Effect:
• Client quickly checks each file’s Bloom filter

• Most files are rejected immediately
• Only a few files are scanned

Moreover:
• Great for equality lookups on large, unique columns

• False positives are fine because it’s still much faster than scanning
• Complements Z-order and statistics-based skipping

• Small index size means low overhead
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Liquid Clustering
Adaptive Layout for Fast Queries
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Liquid Clustering
Traditional Optimization Challenges

• Table management requires careful partition design

• Changing partition keys is expensive and often requires a full table rewrite
• Z-ordering needs continuous monitoring to match evolving query patterns

• Data skew: uneven distribution creates imbalanced partition sizes, which slows down queries
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Liquid Clustering
What Is Liquid Clustering?

A new dynamic clustering strategy:
• Continuously maintains clustering as data evolves

• No need for expensive, full-table OPTIMIZE operations
• Automatically adapts as new data arrives or existing data changes

• It replaces partitioning and Z-ordering
• No more expensive rewrites

Idea:
• Instead of periodically “reorganizing everything,” the table stays well-organized over time

• The data is organized using clustering keys to optimize layout and simplify table management
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Liquid Clustering
When to Use Liquid Clustering

• Frequent filtering on high-cardinality columns where partitioning fails

• Tables with data skew that need balanced distribution
• Fast-growing tables requiring constant tuning

• High-concurrency writes, where clustering reduces conflicts
• Changing query access patterns over time

• Cases where partitioning would create too many or too few partitions
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Liquid Clustering
Enabling Liquid Clustering

• Add CLUSTER BY (<columns>) in CREATE TABLE for existing tables

• ALTER TABLE <name> CLUSTER BY (<columns>) for new tables
• Updates metadata only — does not rewrite existing data

• SQL, Python, and Scala APIs are all supported
• DataFrame API note: clustering keys can be set only at creation or with overwrite mode — not in append mode
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Liquid Clustering
Enabling Liquid Clustering

Clustering is incompatible with traditional partitioning and ZORDER.
It is designed to replace both.
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Liquid Clustering
Choosing Clustering Keys

Selecting the right keys is crucial — good keys maximize data skipping and boost query performance.

• Filter-first: choose columns most used in WHERE clauses and joins

• Stats required: keys must be among columns with collected statistics (first 32 by default)
• Avoid redundancy: skip highly correlated columns — pick just one
• Up to 4 keys: more can hurt performance on tables < 10 TB
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Liquid Clustering
Automatic Liquid Clustering

How it works:
• Workload analysis: identifies the most frequently filtered columns

• Adaptive optimization: updates keys as query patterns or data distribution change
• Cost-aware decisions: picks new keys only when the benefit outweighs the re-clustering cost

• Powered by predictive optimization: runs asynchronously in the background



DND

Liquid Clustering
Automatic Liquid Clustering

When keys may not be selected:
• The table is too small to benefit

• The existing layout is already effective
• Insufficient or inconsistent workload
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Liquid Clustering
Key Benefits

• Stable performance without heavy maintenance jobs
• Faster queries with consistent data skipping

• Lower cost: avoids massive table rewrites
• Supports evolving datasets and dynamic clustering keys

• Redefine clustering keys without rewriting existing data is possible
• Simplify data layout: replaces manual partitioning and Z-order with one flexible technique

• Adapt to change: modify clustering keys without costly rewrites
• Automate with intelligence: automatic Liquid Clustering analyzes workloads and manages keys
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Summary & Recommendations
Combine Techniques for Best Performance

• No single optimization solves everything — Delta works best when techniques are combined
• Start simple: partition → compact → Z-order

• Add Bloom for faster lookups on high-cardinality columns
• Run VACUUM regularly

• Migrate to Liquid Clustering (if possible) for large, frequently-updated tables
• Re-evaluate periodically as data volume grows
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Any 
Questions?
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