Apache Spark Architecture: Under the Hood

Tracing the life of a query from code to cluster.
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Spark is a Unified Computing Engine, Not a Storage System.

Based on the official documentation, Spark’s job is to:

1. Ingest data from a source system.
2. Process it in parallel across a computer cluster.
3. Output the results to a destination.
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Key Insight

Spark shines when data is too big for one machine. For small data which fits your personal
computer, simpler tools like Pandas in Python are often better.
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The Core Components: An Architectural Triad

Driver
The Mastermind

The central coordinator. It takes your
code, uses the Catalyst Optimizer to
create the most efficient execution
plan, and splits it into tasks. It almost
never touches the data itself to avoid
becoming a bottleneck.

Cluster Manager

The Resource Negotiator

Provides the hardware resources. Examples: YARN,
Kubernetes, Mesos. Its job is to guarantee delivery of
drivers and executors.

Executor
The Workhorse

A process that runs on a
worker node. It executes the
tasks assigned by the Driver,
performing the actual data
processing. Many

executors run in parallel.
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df = spark.read.csv(...)

A Query is Born, But Execution Waits

e The journey starts when a user submits code through a
"SparkSession —the main entry point to Spark. “
e The Driver receives the code but does not execute it immediately. L

This is Lazy Evaluation.

</>® —p| "SparkSession’

User Code

Key Insight
Spark doesn’t run anything until an “action’ is called. It waits to see the full plan first, allowing it to
perform powerful optimizations.
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... .filter(col("payment_type") == "Cash")
The Mastermind’s Plan: The Catalyst Optimizer

The Driver uses the Catalyst Optimizer to analyze the user’s transformations and rewrite them for

maximum efficiency.

Naive Plan Optimized Plan
Read All Data &
Columns

Group By
“payment_type"

l

[ Filter for "Cash’

~

Read ONLY

Needed Columns

Group By
“payment_type’

Catalyst Optimizer

e )

Predicate Pushdown &
Projection Pruning:

Filtered Data & &~ Limits 1/O by filtering

data and selecting
columns at the source.
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Deconstructing the Plan into Jobs, Stages, and Tasks

The Driver translates the optimized logical plan into a physical execution hierarchy:

Task

Task

Stage 1

Task

The smallest unit
of work. One task
is sent to one
executor slot and
prﬂces.ses one
partition of data.

A group of tasks that can be executed together
without shuffling data. A new stage is created
whenever a wide transformation (a shuffle) is required.

Task

Task

Job

Triggered by a single Action (e.g., .count (), .save()). An application can have multiple jobs.
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.show()
The Action is Called: Work is Distributed

: Executor
e The Driver sends tasks to the
Executors. Partition
« The source data is logically split into
Partitions. Partition
o Each Task operates on exactly one Driver =7
partition of data.
tﬂ_E—r_‘: Task Executor

Task

e Each Executor has multiple “slots”
(equal to its CPU cores) and can run
that many tasks in parallel. With 2
workers of 4 cores each, 8 tasks can
run in parallel. Partition

Partition
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.filter(col("passenger_count"”) > 1) or .select("payment_type")

Efficient & Independent: The Power of Narrow Transformations

These are operations where each partition can be transformed without any knowledge of other partitions.
Executors can work on their data independently, without needing to communicate with each other. They are fast,
efficient, and do not trigger a shuffle.

Executor

Data Partitions

Transformed Data

Executor

Data Partitions

VY

Transformed Data

Executor

Data Partitions

Transformed Data
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.groupBy("payment_type") or .orderBy("trip_distance")

The Bottleneck: When Executors Must Communicate via a Shuffle

Wide transformations require data from other partitions. To perform a ‘groupBy , an executor needs all

records for a given key (e.g., all payment_type="'Cash'). This requires a massive, expensive exchange
of data between all executors, known as the Shuffle.

Executor Executor Executor

Data Partitions 3 iti Data Partitions

Key Insight
Shuffling requires writing data from memory to disk, sending it over the network, and reading it back
into memory on another machine. It is the most common performance killer in Spark.
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Reading the Signs: How to Spot a Shuffle in the Spark Ul

The shuffle is what defines
Stage 2

the boundary between Stage 1
stages. stages. You can
diagnosed it in the Spark Ul
1. The ‘Exchange’ step in the DAG explicitly marks

by looking for:
the data shuffle and the boundary between stages.

Shuffle Shuffle
Write Size Read Size

Stage 1 00:07:39 1/2 50.0 GB 50.0 GB
Stage 2 00:07:24 3/1 50.0GB 50.0GB

Stage ID Description Duration Tasks

2. Key metrics like ‘Shuffle Write Size’ and

‘Shuffle Read Size’ quantify the cost. Large
values here indicate an expensive shuffle.
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The Shuffle's True Cost is Determined by Data Cardinality

.

.

ty groupBy

High Cardinal

The volume of shuffled data depends not just on the transformation, but on the data itself.

Low Cardinality "groupBy

.groupBy("pickup_date_time")

.groupBy("payment_type")
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Spark’s Built-in Intelligence: Tungsten and AQE

Beyond Catalyst, other engines work to make Spark fast:

I

Project Tungsten

A “bare-metal” optimization engine. It generates
optimized bytecode on the fly (Whole-Stage Code
Generation) and manages memory directly,
bypassing the JVM for significant speed gains.

Adaptive Query Execution (AQE)

Provides “mid-flight corrections.” Spark
re-optimizes the plan during execution based on
real data statistics, for example, by dynamically
collapsing shuffle partitions from the default of
200 to a more optimal number.

& NotebooklLM



API| Matters: Low-Level Control vs. High-Level Optimization

RDD (Resilient Distributed Dataset) | DataFrame / Dataset

API Style Functional. Low-level control over "how" to | Declarative/SQL. High-level definition of
execute. "what" to compute.

Optimization = Manual. Considered a "black box" to Spark. | Automatic. Fully optimized by Catalyst.

You forgo all benefits of the Catalyst Spark understands the query's intent and
Optimizer. can rewrite it.

Use Case Legacy code or niche use cases requiring The modern standard for virtually all data
fine-grained control over physical data processing tasks.
distribution.

Key Insight

Always prefer the DataFrame/Dataset API. You get immense performance benefits from Catalyst for free.
Using RDDs means you are taking on the role of the optimizer yourself.
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The Architect’s View: Four Core Principles

I
plp
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Plan First, Execute Later: Lazy evaluation and the Catalyst
Optimizer are the foundation of Spark’s performance. Trust them.

Parallelism is Everything: Work is executed via Tasks on Partitions
across many Executors. Understand this distribution model.

Avoid the Shuffle (When Possible): Wide transformations are the
primary performance bottleneck. Understand when and why they
happen by checking the Spark Ul.

Use High-Level APIs: The DataFrame APl unlocks Spark’s full
optimization potential. The Spark Ul unlocks your ability to see it in
action. £ Noteboold M



The Journey Continues in Your Own Code

The best way to learn is to build. Open the Spark Ul on your
next job and try to trace the journey of your query. Identify
the jobs, find the stage boundaries, and measure the
shuffle. This is how understanding becomes expertise.



