The Core Tension in Big Data: Speed vs. Truth

The Dilemma
Every data platform must reconcile two competing demands:

Truth (Veracity)

The business needs insights that are correct. Comprehensive historical
reports, accurate financial models, and regulatory compliance demand
completeness and absolute accuracy. This is the world of batch
processing.

Speed (Velocity)

The business needs insights now. Real-time dashboards, immediate fraud
detection, and instant recommendations demand millisecond latency.
This is the world of streaming.

The Question: How do we build systems that deliver both without compromise?

This challenge gave rise to the Lambda and Kappa architectures.
&1 NotebookLM

The Two Foundational Paradigms: Batch and Streaming

Batch Processing (The Complete Picture)

N Yl

Process Entire Dataset

ij:7 Complete
Result
Concept

Processes a fixed, known volume of data. Queries run against the entire dataset
to compute a result.

Strengths

- Complex Logic: "On SQL, you can do practically anything.” Ideal for heavy
joins, complex aggregations, and sophisticated models.

- Error Correction: Easy to reprocess. If you find a bug, you simply erase the
result and recalculate from the full dataset.

Weaknesses
- Latency: High-latency by nature. Data must be collected, loaded, and then
processed, which can take hours.

Stream Processing (The Immediate Answer)

Concept
Processes a continuous, unbounded flow of events in real-time. State is
updated incrementally.

Strengths

- Speed: Extremely low latency (milliseconds). Results are available almost
instantly.

- “Boundless Data": Can handle infinite data streams as it doesn’t need to
store the full history for processing. Events are processed and can be discarded.

Weaknesses

- Simple Logic: Struggled with complex, non-additive measures (e.g.,
"COUNT DISTINCT ') and logic that requires historical context.

- Hard to Correct: "Events have already gone to the trash.” Fixing a past
mistake is incredibly difficult as the original data is gone.

& NotebooklLM

The First Grand Compromise: The Lambda Architecture

“The advantages of one system are the disadvantages of the other. Loretogic

The obvious solution is to combine them.” — Nikolay Golov, Avito 1. Ingest: All data is sent to both
the batch and speed layers.

2. Batch Layer: Stores the
complete, immutable master
dataset. Periodically

Batch Layer recomputes comprehensive and

R accurate views from the entire

L @ history. This is the source of

HDFS/Data Lake

pateh truth”.
views ; 3. Speed Layer: Processes data in
:D E —>| Serving s real-time to provide low-latency,
=X Layer approximate updates for the
most recent data. This is the
New Data Query / source of “speed".
Final Result
Speed Layer 4, Serving Layer: Responds to
Real-time Processing queries by merging results frc-!*n
the batch views and the real-time
Real-time views, providing a complete
Views picture.

& NotebookLM

The Complication: The Heavy ‘Duplication Tax’ of Lambda

Stream Logic
(e.g., Flink, Storm)

Batch Logic
(e.g., Spark, SQL)

o'y

Stream Logic
(e.g., Flink, Storm)

Batch Logic
(e.g., Spark, SQL)

Martin Kleppmann noted a key practical problem: “Having
to maintain the same logic to run both in a batch and in a
stream processing framework is significant additional
effort... the operational complexity of debugging, tuning,
and maintaining two different systems remains.”

Dual Codebases: Business logic must be implemented
{ﬁ*\ <> \ twice: once for the batch system and again for the stream

system. This is error-prone and slows down development.

“The two codebases drift apart, and the project dies.”

H

Complex Merging: The serving layer's task of merging
batch and real-time views is non-trivial, especially for
complex outputs beyond simple time-series aggregations
(e.g., joins, sessionization).

O Expensive Reprocessing: While reprocessing the entire

n(J%_} historical dataset is powerful, it's expensive on large

datasets. This often leads to incremental batch
processing, which adds complexity and blurs the line
with the streaming layer.

&1 NotebookLM

In the Wild: Avito’s Real-Time Counter Challenge

The Business Problem

s o N o) Build a service to provide real-time counters for user ads
~ @ 4,521 (views, phone number reveals, unigue visitors, etc.).
Views - : .
C— The Engineering Requirements
$200 - Speed: Users expect to see view counts update instantly
T % 132 after a call or a page refresh. Latency must be in seconds or
Phone Clicks milliseconds.
- Accuracy & Stability: Numbers can't suddenly drop after a
‘cleaning’ process. This erodes user trust.
oOo - Complex Filtering: Must accurately filter out bots and
L e J :Q:‘ 3 '_8_90 parsers, a task that requires historical context.
Unique Visitors - Evolving Logic: Must handle new counters and logic changes

without losing historical data.

Initial Approach (Streaming-only): A simple streaming counter was built first. It quickly ran into three critical failures:

1. ‘Short History’ Problem’: New counters started at zero, creating data inconsistencies.
2. Poor Filtering’: Simple stream-based filtering was ineffective against sophisticated bots.
3. Unfixable Errors’: Bugs in the counting logic permanently corrupted the data, as past events were already discarded.

& NotebookLM

Avito’s Pragmatic Solution: A ‘Lambda for Filtering’

Instead of building one giant, monolithic Lambda, they broke the problem down. The most complex part—bot
detection—was offloaded to its own dedicated Lambda microservice.

4

Cookie Whitening Lambda
|
Batch Layer] —y
3 (Deep Analysis) J l \
—3 s = - =]
cl Vertica: Machine Learning ‘ : o RN
> & Full History Serving Layer — T) > == >
T} —_> @, i [] |:|
i Trusted Cookies S 0 :
d Speed Layer : l S
Red tool =
User Events (Rough Guess) Il Ad View Events |
Stream Processor: Counter Service
Real-time Behavior
This mini-Lambda isolates the complexity of bot detection. The main counter remains simple, performing a fast key-value lookup to filter events.
How it Works
» (Cookie Whitening): A stream processor makes a ‘rough guess’ about which cookies are legitimate based on real-time behavior.

» Batch Layer (Cookie Whitening): A batch process in Vertica runs a deep analysis using machine learning and full user history to create a definitive list
of good/bad cookies.

 Serving Layer (Result): The definitive list from the batch layer constantly updates the in-memory database of trusted cookies, correcting the rough
guesses from the speed layer.

Benefit: This isolates the complexity. The main counter service remains simple; it just needs to do a fast key-value lookup. The logic duplication is
minimized and contained within a single, focused service.

&1 NotebookLM

The Avito Counter Architecture in Production

Incoming
Event
Stream

—:~»~

][]

—
T

Speed Layer

_@ preliminary calculations.

Redis (64 nodes, 1.3 TB RAM)
+ services in Go, performing

Batch Layer

\

Vertica (14 servers, 50 TB data)
performing complex filtering
and accurate recalculations.

Periodic
Correction
& Qverwrite

Embrace Microservices:

“If you realize simplicity is failing...
don't grow a monolith. Build another
Lambda contour.”

Simple Logic is Key:

The speed layer logic must be kept
extremely simple. All complexity is
pushed to the batch layer.

Be Ready to Repopulate:

"You must have all the buttons at your
fingertips to re-query the speed layer
and overwrite it with data from the
batch layer. Errors will happen." The
batch layer is the ultimate source of
truth and recovery.

&1 NotebookLM

A Reaction to Complexity: The Kappa Architecture

Proposed by Jay Kreps (a co-creator of Apache Kafka).

“Why not just use a st1 | : ‘as the backbone
for all data handling?”

Shieeln Servin
Immutable Event Log (e.g., Kafka) Processing J
. Layer
Engine

Reprocess by Replaying Log

How it Works
* No Batch Layer: The batch layer is eliminated entirely.
« Unified Logic: There is only one codebase to maintain—the one for the stream processor.
* Reprocessing via Replay: To correct errors or compute new views, you deploy new code and simply
replay the event log from the beginning (or a relevant checkpoint) through the stream processor.

& NotebooklLM

A Strategic Comparison: Lambda vs. Kappa

Characteristic

Core Idea

Lambda Architecture

Separate batch and speed processing paths.

Kappa Architecture

A single, unified stream processing path.

Layers

Batch Layer + Speed Layer + Serving Layer

Stream Processing + Serving Layer

Source of Truth

The master dataset in the batch layer (e.g., HDFS/S3).

The immutable event log (e.g., Kafka, Pulsar).

Complexity

High. Two codebases and two systems to maintain
and debug.

Lower. A single codebase and processing
paradigm.

Maintenance

Difficult. “Maintaining two different systems is not
easy.”

Easier. A single system to manage and
evolve.

A batch job recalculates aggregates from the master

The entire log is replayed through the stream

Reprocessing T DrOCESSOT
Latency r;l;:g;ecnnds (from speed layer) + Hours (from batch |\ 0o de 10 seconds.
BectEor Systems requiring both precise, complex batch Real-time-centric use cases: |oT, monitoring,

reports and real-time dashboards. Bl analytics.

clickstream analysis, fraud detection.

& NotebooklLM

The Modern Resolution: Unifying Batch and Stream

The Problem with the Debate:

“Both Lambda and Kappa sought to address limitations of the Hadoop ecosystem of the 2010s by
trying to duct-tape together complicated tools.” — Fundamentals of Data Engineering

The Philosophical Shift:

More recent work has shown that the distinction between batch and stream processing
processing is artificial. The core insight is:

“Batch is just a special case of streaming.”

Batch: A Bounded, Finite Stream

il i |
e e Y Unbounded Stream

» A stream is simply an unbounded series of events over time.
A batch is a bounded, finite series of events.

» Therefore, a unified system can treat all data as an event stream, and batch processing simply
becomes processing a stream with a defined start and end.

& NotebooklLM

The Enabling Technology: The Dataflow Model

Pioneered by Google and implemented in open-source as Apache Beam.

12 01 12:02 12 03 12 04 12 05

Event Time >
\\ \\\TE Arrival

Processing Time

A g

12 02 2 2:0 2:0 12 06
Tumbling Windows Sliding Windows Session Windows
[12:00 - 12:02] l‘].E 02-12: [M] [12:00 - 12:02]] [12 01 - 12:04]
ey 28 ol —> | Ommrmen) = (O e =
Q O 112:02 - 12:04]
Correctly places late data based on O O
Event Time, not Processing Time.

How it Works & Impact

- Unified API: Provides a single programming model to express data processing pipelines.

- Event Time Windows: It decouples when data occurred (event time) from when it is processed (processing time). This is
critical for correctly reprocessing historical data.

- Unified Engine: The same code can be executed by a runner (like Flink or Spark) to process both Unbounded Data (streams)
and Bounded Data (batches).

Impact Statement — This approach finally solves the "Duplication Tax" by allowing batch and stream computations to be
implemented in the same system with nearly identical code.

& NotebooklLM

Guiding Principles for Modern Data Architecture

=) —— C b
3 x

g

L o)
Solve Business Favor Simplicityand Unify Where The Event Log isthe Be Prepared for
Problems, Don’t Just Modularity Possible Source of Truth Evolution and
Implement Patterns As seen with Avito, The trend is toward The Kappa reprocessing
“Always prioritize complex systems are convergence. A unified architecture's coreidea Systems and
requirements over better built from model for batch and of an immutable, requirements change. The
building something simple, streaming (like Apache replayable log is ability to reprocess
cool.” composable Apache Beam) foundational to modern, historical data to derive
Avoid “resume-driven components than as a eliminates the primary resilient systems. It new views or fix mistakes
development” where single monolith. weakness of the enables reprocessing, s not a “nice-to-have,” it
technology choices are Isolate complexity. Lambda architecture— debugging, and system IS a core mechanism for

made for their novelty
rather than their fit.

the “Duplication Tax.”

evolution.

system maintenance and
evolution.

& NotebooklLM

The Enduring Legacy of Lambda and Kappa

Lambda (Batch + Stream)

Unified Platforms

(Data Lakehouse,

Data Warehouse Modern Data Stack)
(Batch)

Kappa (Stream-only) }

The Takeaway
Lambda and Kappa were not final They forced the industry to grapple with The core principles they pioneered—deriving Understanding their history is key to
destinations, but critical steps in the the challenges of combining batch and views from an immutable event stream and understanding the 'why' behind the
evolution of data architecture. real-time processing, the importance of reconciling speed with accuracy—are now architecture of today.

immutable data, and the power of fundamental concepts embedded in modern

reprocessing. data platforms like the Data Lakehouse,

which aims to provide the best of both worlds
on a single, unified foundation.

&1 NotebookLM

